//
Additional information

_____________________________________________
In reply to https://grumpydenier.wordpress.com/guest-posts/tony-from-oz/power-plant-comparison-coal-fired-versus-wind/#comment-238

Jeff, thanks for this response.

There’s only so much I can mention in the main article, and if I was to mention everything, then it would become horrendously long, so I’ll try and cover it with this reply, which to explain correctly, then by its very nature, this must also be long as well..

It is entirely correct to bring this matter up, and yes coal fired power will have extra costs, but the point I was making was the headline indicator of actual power generated for consumption. All forms of power generation will also have other associated costs relating to their operation, and wind power is not immune from those costs either.

As to maintenance costs, consider that with this one coal fired plant, we have two units, from the coal loader, the crusher, the feeder, the injectors, both for coal and ram air, the furnace, the boiler, the pressuriser, the multi stage turbine, the generator and the regulators. Two complete units at ground level in an environmentally controlled area at ground level. Any maintenance is indeed a relatively involved process, but relatively easily carried out.

With the wind plant, you have the huge fan blades at the front driving the generator through a CSD. (Constant Speed Device) There are directional controls for the positioning of the nacelle, a feathering device and the generator itself, all contained in that nacelle, which by its very nature has to be in a confined space for weight saving purposes. All of this is on top of a 340 foot pole. The coal fired plant has 2 units. The wind plant has 425 units spread over what amounts to many square miles. I would suggest that a wind plant would have higher maintenance costs when compared to a coal fired power plant.

True, coal fired power also has other costs, not the least of these the purchase of the coal itself, and in some cases the transport of the coal to the plant. However, in a lot of cases coal fired plants are constructed at, or near to, the source of the coal, and in some cases, the coal fired plant actually owns the coal itself.

That being the case then, with these added costs, let’s again look at just what I wrote in the main article.

What needs to be recovered here is the original Capital cost, and that is spread over the life of the plant and is calculated at recovery by the sale of the electricity at a per unit cost basis, and keep in mind here, that right from the outset I based the whole exercise on the same original cost.

So, here we have this wind plant, which delivers for consumption an amount of that calculated 55.875TWH for a Capital cost of that $3.4 Billion. So then, just to recover that Capital cost alone, the wind plant has to set a base price for the sale of its electricity to the grid, the wholesale price, (not the retail that the consumer pays) set at 6.1 cents per KWH just to recover the Capital cost.

The coal fired plant, just to recover the same Capital cost, charges only 0.44 cents per KWH.

0.44 cents per KWH compared to 6.1 cents per KWH.

The same applies here with all costs. They are spread across the lifetime expected actual total power delivery for the plants, both wind and coal fired, and as you can see, if wind has a considerably shorter lifespan, and a considerably smaller power delivery, then they have less power to recover those costs from, hence any maintenance costs would add a larger increment to wind than to coal fired.

Even with everything added on to make coal look to be more expensive, and with wind power running at the absolute best with no added costs whatsoever, then coal fired power is still infinitely cheaper.

The whole cost structure is based around power actually being delivered for sale, and if the coal fired plant delivers the base 14 times more power, then no matter what added extra costs you load onto the coal fired option, it will still be so much cheaper.

All this is based on worst case scenario for coal fired power and best case scenario for wind.

At the option where wind has a lifespan of only 15 years, which is now proving to be the case, then coal fired power stays at the 0.44 cents per KWH and wind now becomes 10.12 cents per KWH, just to recover the Capital cost.

As I mentioned in the earlier Guest Post, everything is being done to make the coal fired option look expensive, while at the same time making wind look cheap.

I hope this adds some further explanation for you.

Again, sorry to reply at length, but when it comes to replies, I prefer to go with a correct explanation detailing the facts instead of the easy one liners.

Tony.
_____________________________________________

Discussion

No comments yet.

Add your thoughts. . .

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Enter your email address to follow this blog and receive notifications of new posts by email.

Follow me on Twitter

Flag Counter
%d bloggers like this: